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Abstract. We show how the method of pseudo-transient continuation can be applied to improve
the robustness of the Newton iteration within a nonlinear transient elasticity simulation. Pseudo-
transient continuation improves efficiency and robustness of the transient analysis by enabling larger
time steps than possible with a Newton iteration. We illustrate the algorithm by reporting on a
simulation of a buckling cylinder.
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1. Introduction. Let the nonlinear set of equations arising in nonlinear tran-
sient elasticity be given by

r(u) = 0, (1.1)

where r(u) represents the sum of transient, internal and external forces, and u the
corresponding displacement field. A standard approach for the solution of (1.1) is to
employ Newton’s iteration for (1.1), e.g.

r′(uk)∆u = −r(uk) , uk+1 = uk + ∆u , k ← k + 1 (1.2)

where r′ denotes the Jacobian of r, and uk is the k-th iterate. If the initial iterate u0

is within the region of local convergence, then Newton’s iteration is viable, assuming
that the linear set of equations given by (1.2) are efficiently solved.

The purpose of this paper is to demonstrate the utility of pseudo-transient con-
tinuation (Ψtc) as a robust variation of Newton’s method for use within a nonlinear
transient elasticity simulation. We present numerical examples that show that Ψtc
enables the use of a larger time step than that associated with the standard Newton
iteration used within a nonlinear transient elasticity simulation.

Ψtc is a way to recover convergence of Newton’s method when the initial iterate
u0 is not within the region of local convergence, and improve the solution efficiency
of the associated set of linear equations. Ψtc recasts the nonlinear set of equations
(1.1) to compute the steady-state solution of an initial value problem of the form

du
dτ

= −r(u), u(0) = u0, (1.3)

if such a solution exists. By a steady-state solution we mean u∗ such that

lim
τ→∞

u(τ) = u∗,
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Fig. 2.1. Geometry and kinematics

where u(τ) is the solution of the initial value problem (1.3). Hence u∗ is a solution
to (1.1). A first-order Rosenbrock [10] scheme applied to the time integration of (1.3)
leads to (

δ−1
k I + r′(uk)

)
∆u = −r(uk) , uk+1 = uk + ∆u , k ← k + 1. (1.4)

In this sense, Ψtc modifies the Jacobian with a “pseudo-time step” δk. Note that
addition of δ−1

k I to the Jacobian r′ regularizes the linear set of equations and so may
lead to a more efficient solution when the Jacobian r′ is ill conditioned. We refer the
reader to [12, 5, 9] for more details including a Ψtc convergence theory.

Ψtc advances a pseudo-temporal discretization of (1.3), but in a very different way
from a fully temporally accurate integration. Rather Ψtc manages the “pseudo time
step” to make it as large as possible with a view toward rapid convergence to steady-
state. Ψtc is different from integrating (1.3) to steady-state with a conventional initial
value problem code [10, 1, 19] where the time step is controlled with stability and
accuracy in mind. Hence Ψtc is motivated by the goal of fast convergence to steady-
state and not that of local temporal accuracy. Ψtc has been applied to computational
fluid dynamics [6, 18, 17, 24, 13, 16], combustion [14, 21], plasma dynamics [15],
radiation transport [20], and hydrology [8].

Our paper is organized as follows. Section 2 briefly reviews a finite element for-
mulation for nonlinear transient elasticity resulting in a semi-discrete set of equations.
Section 3 describes the time integrator applied to the semi-discrete set of equations.
Section 4 recasts the (fully) discrete set of equations using Ψtc , and two management
schemes for δk. Finally, section 5 discusses our numerical examples.

2. Nonlinear transient elasticity. The local form of the problem of interest
is the initial boundary value problem

ρü = ∇ · (F · S) + ρb in Ω× [0, T ] , (2.1a)

S = C : E = C :
1
2

(
FT F− I

)
, (2.1b)

u = uD in ΓD × [0, T ] , (2.1c)
t = tN in ΓN × [0, T ] , (2.1d)
u = u0 ; u̇ = u̇0 in Ω at t = 0 . (2.1e)
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Here, F denotes the deformation gradient that maps the material to the spatial con-
figuration (see Figure 2.1).

F =
dx
dx̄

= ∇0x. (2.2)

S is the Second Piola Kirchhoff stress tensor and b a body force. The stresses S
are related to the strains E via the material law described through C. The Green-
Lagrange strains E are computed from the deformation gradient F by

E =
1
2

(
FT F− I

)
. (2.3)

The relationship between E and x̄ = x + u represents the nonlinearity. The material
law is potentially another source of nonlinearity though for simplicity we assume that
C represents a linear stress–strain relationship.

Let the trial and test spaces be S =
{
u ∈ H1 (Ω) | u|ΓD

= uD

}
and V = H1

0 (Ω),
respectively. The principal of virtual work for (2.1) is: Find u ∈ S so that ∀ δu ∈ V∫

Ω

ρü · δu dΩ +
∫

Ω

S : δE dΩ−
∫

ΓN

tN · δu dΓ−
∫

Ω

ρb · δu dΩ = 0 . (2.4)

Introducing finite element approximations uh ∈ Sh ⊂ S and δuh ∈ Vh ⊂ V where
Sh,Vh are finite element subspaces yields a discrete version of (2.4). Under a finite
element discretization, the first and second integrals in (2.4) result in the transient and
internal forces f trans(uh, t) and f int(uh), respectively, and the remaining two integrals
represent the external force f ext. The discrete analogue of (2.4) is then

f trans(uh, t) + f int(uh) + f ext = 0 (2.5)

The internal force f int(uh) represents the nonlinear function. The external force f ext

may also represent a nonlinearity but for simplicity, we neglect this case in our paper.
In the remainder of our paper, we omit the use of the superscript h denoting the finite
element approximation of uh to u.

3. Time discretization and Newton iteration. We employ the Generalized−
α method introduced in [4] and described in [7] for time integration. In a discrete
time interval [tn, tn+1] with ∆t = tn+1 − tn, the ansatz is

un+1 = un + ∆tu̇n + ∆t2
((

1
2
− β

)
ün + βün+1

)
, (3.1a)

u̇n+1 = u̇n + ∆t ((1− γ) ün + γün+1) , (3.1b)
ün+αm

= (1− αm) ün+1 + αmün, (3.1c)
u̇n+αf

= (1− αf ) u̇n+1 + αf u̇n , (3.1d)

where β, γ, αm and αf are constants controlling the type of time integration used and
the amount of numerical energy dissipation desired. Inserting (3.1) into (2.5) yields
the residual expression

r(un+1) = (1− αf )f int(un+1)− (1− αf )f trans(un+1, tn+1)

+ αf f int(un)− αf f trans(un, tn) + f ext , (3.2a)
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f trans = M
[
1− αm

β∆t2
(un+1 − un)− 1− αm

β∆t
u̇n −

(
1− αm

2β
− 1

)
ün

]
(3.2b)

where M is the mass matrix that is independent of t and un. A Newton iteration
(1.2) determines un+1, and is given by

r′(uk
n+1)∆u = −r(uk

n+1) ,uk+1
n+1 = uk

n+1 + ∆u , k ← k + 1 (3.3)

where the Jacobian is given by

r′(uk
n+1) =

1− αm

β∆t2
M + (1− αf )KT , (3.4a)

KT =
∂f int

n+1(u)
∂u

|uk
n+1

. (3.4b)

The Jacobian represents the effective tangent stiffness matrix given the tangent stiff-
ness matrix KT . Once the Newton iteration (3.3) is converged, velocities and accel-
erations are updated using

u̇n+1 =
γ

β∆t
(un+1 − un)− γ − β

β
u̇n −

γ − 2β

2β
∆tün, (3.5a)

ün+1 =
1

β∆t2
(un+1 − un)− 1

β∆t
u̇n −

1− 2β

2β
∆tün . (3.5b)

to advance the time step.
The efficiency of the above nonlinear transient elastic simulation crucially depends

upon the size of the time step ∆t, and the ability to solve the linear set of equations
in (3.3). A robust method of solution for (3.3) enables large time steps and the ability
to efficiently solve the linear set of equations.

The time step is bounded from above by two factors: First and foremost, the
amount of tolerated time discretization error and error propagation. This aspect is
usually either addressed by time adaptivity using time error estimators or indicators,
or is simply ignored and the time step size is chosen by rule of thumb (a common
approach). The second factor that limits the size of the time step is the efficiency
associated with the numerical solution of the Newton iteration (3.3). For instance, the
condition number of the linear set of equations in (3.4a) becomes that of the tangent
stiffness matrix KT as the time step is increased. Hence if KT is ill-conditioned, then
so is the Jacobian.

The first time step size upper bound mentioned above is of minor relevance when
forces of inertia play a minor role and the problem at hand may be addressed by
a quasistatic approach. In such cases, transient structural dynamics is applied to
circumvent certain numerical difficulties such as loss of definiteness of KT in (3.4b)
that arise in quasistatic nonlinear mechanics in the context of structural instability
e.g. buckling. In such cases M has a strong regularizing effect on the numerical
solution method. In this case, the size of ∆t is limited by the ability of the nonlinear
solution method to converge (3.2a).

4. Pseudo-Transient Continuation. We make the assumption that β, γ, αm

and αf in (3.1) are selected so that

dun+1

dτ
= −r(un+1), un+1(0) = u0

n+1,
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has a steady-state. Therefore we apply Ψtc by replacing the Newton iteration (3.3)
with the Ψtc iteration (1.4) where uk ← uk

n+1 resulting in(
δ−1
k I + r′(uk

n+1)
)
∆u = −r(uk

n+1) ,uk+1
n+1 = uk

n+1 + ∆u , k ← k + 1. (4.1)

The goal of Ψtc is to increase the robustness of the Newton iteration and therefore al-
low for an increase in the time step ∆t. The examples in the next section demonstrate
the increased robustness of Ψtc over a standard Newton iteration.

Two approaches for managing δk during a Ψtc iteration are now discussed. The
first, and the most common approach in the literature is “Switched Evolution Relax-
ation” (SER) [16]. In SER the new time step is

δk+1 = min(δk‖r(uk)‖/‖r(uk+1)‖, δmax) = min(δ0‖r(u0)‖/‖r(uk+1)‖, δmax).

Using δmax = ∞ is common. At present, the convergence theory requires that the
time step be updated with SER.

An alternative, not supported by theory, is the temporal truncation error ap-
proach (TTE) [14]. TTE estimates the local truncation error and manages the growth
of δk by attempting to bound the truncation error. This differs from the time step
control undertaken for an accurate numerical integration in that the bound on the
truncation error for TTE is large.

5. Numerical Example. We consider a thin–walled cylinder that is hinged at
the top and bottom. The cylinder radius is 200mm, the height is 225mm and the
wall thickness is 0.054mm. The cylinder is discretized with hybrid bilinear quadrilat-
eral shell elements applying a 7–parameter shell formulation [3, 2] that includes wall
thickness change resulting in an extremely ill–conditioned problem [11]. A compress-
ible Neo–Hookean hyperelastic material with Young’s modulus E = 1000, Poisson
ratio ν = 0.3 and density ρ = 10−6 is chosen. The cylinder is deformed by a time
dependent Dirichlet boundary condition at the top of the cylinder shortening along
its central axis by 10.8mm within T = 0.405s. Figure 5.1 displays the buckling of the
cylinder under two discretizations. Under either discretization, the problem results in
nonlinear behavior that challenges the nonlinear transient simulation.

We solve the nonlinear problem (3.2a) with Newton (3.3) and Ψtc (4.1) iterations,
respectively. The initial pseudo time step δ0 is δ0 = 0.01 where both the SER and
TTE schemes in turn manage δk. We terminate the iterations when both conditions

‖r (un+1) ‖ < 10−6, ‖∆u‖ < 10−6 (5.1)

are satisfied.
We present two sets of experiments. The first set compares the Newton and

two Ψtc iterations on one problem size using three different time steps held constant
during each transient simulation (for a total of nine simulations). This first set of
experiments uses a sparse direct solver for the associated linear sets of equations. The
second set of examples performs a mesh refinement resulting in five problem sizes, and
replaces the sparse direct solver with a preconditioned iterative method. The Newton
and two Ψtc iterations are compared on each of the five problems using a time step
held constant during the transient simulations.

Our first set of experiments used the three time steps

∆t = 7.5 · 10−4, 8.0 · 10−4, 2.0 · 10−3. (5.2)
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Fig. 5.1. Buckling of cylinder. Spatial configuration at T = 0.405s, left: 64000 elements, right:
1000 elements.

Figure 5.2 displays iteration numbers for each time step size associated with the
Newton and two Ψtc iterations.

All three iterations converge for ∆t = 7.5 · 10−4 with Ψtc usually taking one to
two more iterations than Newton’s method on average throughout the simulation.
The Newton iteration does not converge for ∆t = 8.0 ·10−4, 2.0 ·10−3 while both Ψtc
variants (SER, TTE) converge. The SER variant usually uses one to two iterations
less than the slightly more expensive TTE variant of Ψtc . Note that the final time
step of ∆t = 2.0 · 10−3 used during a transient simulation is more than twice as large
than the first time step used during a transient simulation demonstrating that Ψtc is
more robust than the Newton’s iteration. Decreasing the initial pseudo time step size
δ0 in (1.4) allows for even larger ∆t.

Our second set of examples performs a mesh refinement where the finite element
ratio is held constant during refinement, and uses a preconditioned conjugate gradient
iteration (discussed below) for the linear systems. Figure 5.1 displays two out of
five discretizations investigated. The time step size is held fixed at ∆t = 1.6 · 10−3

and the SER variant of Ψtc is applied using the convergence criteria (5.1). The
Newton iteration was unable to converge with ∆t = 1.6·10−3 using the preconditioned
conjugate gradient iteration for the associated linear systems.

Figure 5.3 displays iteration numbers for the five discretizations. We observe
that SER–Ψtc converges for each discretization with the total number of iterations
increasing with problems size. This growth of iterations is due to the geometric
nonlinearity that becomes more severe (see Figure 5.1) for refined discretizations as
these can resolve the buckling effects in more detail.

We end this section with a brief discussion of the preconditioned iterative method
employed in the second set of experiments. A parallel conjugate gradient iteration
preconditioned by a smoothed aggregation algebraic multigrid (SA–AMG) [23, 22]
was used. The convergence criteria used was∥∥rlin

k

∥∥ /
∥∥rlin

0

∥∥ < 10−6

where rlin is the residual of the linear system solved at each nonlinear iteration.
An Additive–Schwarz–Gauss-Seidel is applied as the smoother on all multigrid levels
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except the coarsest where an LU factorization is applied. Figure 5.4 demonstrates that
the efficiency of the SA–AMG preconditioned conjugate gradient iteration benefits as
δ−1
k increases. The addition of δ−1

k I regularizes the linear set of equations associated
with the Newton iteration when δk is small. This occurs during the early portion of
the Newton iteration, when the iterates are possibly not within the region of local
Newton convergence.
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